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Abstract 

Physical processes causing limited (<- 1%) energy loss to high 
energy particles traversing bulk matter we examined and their cross 
sections cast in a form suitable for use in Monte Carlo transport calcu- 
lations. Special attention is paid to scattering off edges. An algorithm 
is developed, based on the Fermi distribution of multiple Coulomb scat- 
tering, which generates first passage distributions for escaping parti- 
cles and more generally for transport of particles undergoing multiple 
scattering in the presence of an edge. Implementation of the various 
processes and of the edge scattering algorithm into a Monte Carlo code 
are briefly indicated. A sample of results obtained with this code is 
included. 

1 Introduction 

For a variety of problems encountered in particle transport in bulk matter, 
interest is restricted to particles with energies very near to the incident en- 
ergy, i.e., those identifiable as incident particles and which only participated 
in elastic or quasi-elastic processes. Around high energy accelerators such 
problems arise when beam particles interact with the beampipe, scrapers, 
septa, etc., often with undesired consequences. To address such questions 

‘Fermi National Accelerator Laboratory is operated by Universities Research Associa- 
tion under cantract with the US Department of Energy. 
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a Monte Carlo (MC) code, referred to as ELSIM, owes its existence. This 
paper presents the physical models and approximations on which this code 
is based. Where appropriate, MC procedures are indicated. 

In accelerator related problems, one reason for concentrating on particles 
close in energy to the beam is because these particles may travel with the 
beam for considerable distances, thereby creating a set of problems which 
can be properly analyzed only by starting out from a reasonably detailed 
description of the phase space occupied by these particles. Particles differing 
in energy substantially from the beam create other problems which typically 
have very little overlap with the elastic type and are analyzed by different 
means [l]. The present code may have to be supplemented by other codes 
for comprehensive studies, e.g., at Fermilab problems of radiation induced 
quenching during resonant extraction have been examined [2] using a three- 
code combination: (a forerunner of) ELSIM to study elastic processes, a 
code which tracks the elastics magnet-by-magnet t,hrough the accelerator 
lattice and the MC code CASIM [l] t o calculate energy deposition wher- 
ever the elastics intercept the beampipe and begin to initiate hadronic and 
electromagnetic showers. 

The physical processes included are: (1) multiple Coulomb scattering 
(mCs), (2) coherent and incoherent nuclear elastic scattering, (3) single 
diffractive excitation of a target nucleon, (4) energy loss by collision with 
atomic electrons (dE/dx), but treating separately (5) encounters with large 
momentum transfer, (6) bremsstrahlung, (7) direct pair production. The 
last three processes will occasionally lead to a large energy loss (>- 1%) 
and hence removal of the particle from the elastic set. The latter always oc- 
curs for (8) nuclear absorption. Of these processes (1) and (4) are assumed 
to take place continuously along the track of the particle, while all others 
are treated as discrete events taking place at a point. Item (2) includes 
large angle Coulomb scattering as well as its interference with nuclear scat- 
tering and is thus not mutually exclusive with (l), making a more precise 
delineation necessary. This is also the case for items (4) and (5) as well as 
(3) and (8). These and other matters regarding the physical processes are 
discussed in sec. 2. 

A type of problem connected with elastic processes, which arises in prac- 
tical applications, concerns the fate of a particle inside a thick target but 
close to the surface and nearly parallel to it as occurs, e.g., when a particle 
strikes the surface at a very shallow angle and has a significant chance to 
be reflected back out of the target. Simulation of mCs by applying a finite 
deflection at finite intervals becomes invalid when the escape probability 
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within an interval and hence precise particle position and direction at es- 
cape, are poorly monitored. Reducing the step size sufficiently to overcome 
this can easily become too consumptive of computer time. Beam collimation 
as well as accidental scraping pose problems of this type. An algorithm to 
study such problems is introduced in sec. 3. 

From the point of view of applications the most important projectiles are 
protons (p as well as p) and electrons. The ELSIM code is specifically writ- 
ten for proton projectiles and results presented here are limited to protons. 
Sec. 4 contains a sampling of results obtained with the code. Extension to 
other hadrons requires minimal alteration. For electrons and muons the rele- 
vant physical processes are a subset of the ones enumerated above. Although 
there is considerable shift in emphases among the processes, as well as in 
distance scales, adaptation to the lepton projectiles appears straightforward. 
Adaptation to a simple magnetic environment such as a uniform magnetic 
field should not pose any difficulties although synchrotron radiation may 
have to be included, especially for electrons. 

The valid momentum range of this code is roughly from 1 GeV/c to 
30 TeV/c. Above this range the parametrisations of bremsstrahlung and 
pair production used in the code remain unchecked against more detailed ab 
initio calculations. Below - 1 GeV/c the nuclear scattering model is not well 
validated. The assumption of a constant rms angle for mCs (at least within 
one step) as well as the small angle approximation, which permeates most 
scattering algorithms employed here, preclude application at significantly 
lower energies. 

2 Physical Processes 

The different physical processes included in the program, i.e., those enu- 
merated above, are discussed in this section along with some indication of 
the MC implementation, where appropriate. 

2.1 Multiple Coulomb Scattering 

The treatment of small angle mCs used here is based on the Fermi dis- 
tribution of multiple scattering (sec. 3), which predicts a Gaussian angular 
distribution (in projected angle) for a beam ofparticles traversing a fixed tar- 
get thickness. A well known criticism of this approximation is that, for not 
so thick targets, it fails badly at large angles where single scattering ‘tails’ 
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dominate the Gaussian [3]. This criticism is circumvented by adopting a ju- 
diciously chosen cut-off angle, 00, below which the scattering is treat,ed in the 
Gaussian approximation and above which it is treated event-by-event using 
predictions of Glauber [4,5]. The determination of So is sketched below. 

For a Coulomb potential, Ze/r, cut off at the atomic radius, the Ruther- 
ford scattering cross section for a particle of unit charge, momentum, p, and 
velocity, VJ, may be written as 

where 

dujdn = (2Ze”/p~)~/(L?~ + c!&,,)’ 0) 

6,,,;,, N Z’hnec/Kp. (2) 

Usually K z 200 is assumed, where K is dimensionless. Here, instead of 
being a constant, K is allowed to vary with Z, with its dependence deter- 
mined from experiment. Nevertheless, K retains this order of magnitude. 
An advantage of eq. 1 over more sophisticated treatments is that it yields a 
simple expression for the rms angle of scattering through a foil of thickness 
t, containing N atoms per unit volume: 

(0’) = xNt(2ZeZ/pv)’ {In [(6~~/&i,,)s + 11 - I}. (3) 

Usually B. is identified with 8,,, where 0,.. is obtained from considerations 
of nuclear size. Here 9, = M,,,,. with 6 < 1 is assumed. In addition, 6 is 
chosen such that 02 is at most of order (6’s) where (@) is proportional to step 
size as in eq. 3. This second constraint on 6 ensures that single scattering 
angles 5 6, are well confined within the mCs Gaussian, which in turn helps 
justify the Gaussian approximation. 

A most practical choice of step size is the (randomly varying) distance 
between large angle scattering6 (including absorption) with as its average 
X = l/No,,,,, where ctot is the total cross section summed over all ‘point’ 
processes listed in sec. 1. For 6 < 1, the dominant contribution to cfot 
comes from Coulomb scattering with f? > 00, so that scout may be used to 
fmd a suitable 6. Integrating eq. 1 between 0, and infinity yields: 

ucou, z ctot z T(2ze2/p)2/e& (4) 

For 13, = SIP,,,,, = 15274(m.c/p)A-‘~~ this may be rewritten as 

gcou, z 0.0133ZZA2/3/6a mb. (5) 
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If 6 is chosen to be proportional to Z, i.e., 6 = PZ, then from eq. 5 

Xc,f Y X rz 1.25. 106A1+?z g/cm2 (6) 

while the ratio (0s)/@ becomes 

(6’)/6~ r2 2 ln(4.2. 104pZ’/3) (7) 

where A = 22 and K = 192 are used. For a value of p 2 3. low3 both 
inequalities 6 < 1 (since Z <w 100) and (es)/@ > 1 (see eq. 7, since Z 2 1) 
hold while X E l.lA’13 in g/ems is generally quite suitable as a step length 
in terms of target dimensions and computer time economy. 

The value of K in eq. 2 is now allowed to vary with Z and is determined 
from the experimental results of Shen et al. [7] which measured (Oa) for thin 
targets of various Z in the 50-200 GeV/c momentum range using p, ?r and 
K projectiles. In this experiment (8’) is found to have the expected pm2 
behavior and to be independent of projectile type. Shen et al. fit their data 
to the three parameter function: 

du/dR = ezp [A - (1 + C)(e/&)s + C(O/&)‘] (8) 

which approximates the M&&e distribution [6]. 
To fix K(Z), and hence emin, for a given Z a MC simulation of repeated 

single elastic scattering based on Glauber’s theory (see below) is performed 
for individual scattering angles above ~90 and for target thicknesses roughly as 
in the experiment of Shen et al. [7]. The effect of angles < 00 is introduced by 
combining the results with a set of of random angles drawn from Gaussian 
distributions with Q’S, or equivalently K(Z)%, corresponding to different 
t&i,,. The resulting distributions are then fitted to eq. 8. The effect of the 
uncertainty in 8. in this parametrization is studied by varying 8. (C is fixed 
by Shen et al. at its M&&e predicted value). Fig. 1 shows K(Z,&) as a 
function of Z along with K(Z, 0. i ~0.) as indicated by the error bars. The 
values used in ELSIM of K(Z) are obtained from a least squares fit through 

K(Z, 0,): 
K(Z) = 837Z-“.54. (9) 

The x2 of the above fit is sensitive to the choice of 9, but K(Z) is only 
marginally affected. The fit of K (and 0,;,) to experiment justifies the 
use of eq. 1 to determine (@) in lieu of more sophisticated treatments, e.g. 
ref. [6]. 
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The dichotomy of the problem into single and multiple scattering regimes 
remains, of course, an approximation. There exists some angular regime 
where ‘plural’ scattering dominates, but which here is folded into the mCs 
Gaussian. The choice of a cut-off angle in the above manner ensures that 
the approximation is reasonable for sufficiently large step sizes. A related 
assumption is that mCs takes place continuously along the particle’s track 
which obviously must fail at small enough distances. 

2.2 Nuclear Scattering 

For the present purpose nuclear scattering includes large angle Coulomb 
scattering plus coherent nuclear scattering and their interference as well 
as incoherent nuclear scattering. For hadron projectiles this forms, along 
with mCs, the most important ingredient of the calculation. The treatment 
adopted here is that of Glauber [4,5]. The energy dependent parameters of 
p-p scattering are taken from experiment [a]. For simplicity the p-neutron 
hadronic scattering parameters are assumed to match those of p-p. The 
nuclear density model used by Glauber is the harmonic oscillator potential 
well for light nuclei (4 < A < 12) and the Wood-Saxon distribution for heav- 
ier nuclei. Besides the density model, the theory is formulated differently 
for light and heavy nuclei. For the latter, the assumption that the range of 
nuclear forces is much smaller than the nuclear radius results in significant 
simplification. However, even for beryllium and carbon the heavy nucleus 
prescription is still quite accurate [5]. For convenience then, the heavy nu- 
cleus formulat,ion of the theory (but with harmonic oscillator densities for 
light nuclei) is adopted throughout. 

Extensive comparisons with experiment (below 20 GeV) are reported in 
ref. [5]. Agreement with the 19.3 GeV/c proton data of Belletini et al. [9], 
among others, is excellent for reasonable values of the nuclear parameters. 
The comparison is extended here to the 70-175 GeV/c range, where mea- 
surements for a variety of nuclear species and incident hadrons are reported 
by Schiz et al. [lo]. Figs. 2 and 3 illustrate the fits for a representative 
sample of the proton data. In addition to Coulomb and nuclear scattering, 
the graphs include a relatively small component from particle producing 
processes (see sec. 2.3 below) as indicated in the figures. 

The nuclear parameters are derived from electron scattering [ll], mhere 
necessary by interpolation. No attempt is made at adjusting the parameters 
to improve the fit, which is also not very sensitive to this, e.g., changing the 
parameters to those preferred by Glauber and Matthiae [5] yields a fit only 
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slightly inferior to that of figs. 2 and 3. Along with parameter adjustments 
and more detailed treatment of the light nuclei, a number of other improve- 
ments to the calculation could well result in a better fit, e.g., more accurate 
representation of p-p and especially p-n scattering, separate calculations 
for each isotope present instead of using a single set of averaged nuclear 
properties, inclusion of elastic and diffractive interaction with nuclear frag- 
ments, etc. However, as can be seen from the figures, Glauber theory with 
this choice of parameters fits the data quite well over a region of momentum 
transfer which includes essentially all of the coherent and most of the inco- 
herent cross section. With the proper energy dependence of the hadron-p 
and h-n scattering parameters, the model should apply equally well to other 
hadrons and at other energies. 

In the MC program Coulomb and coherent nuclear scattering are com- 
bined but treated separately from incoherent scattering. Sampling of scat- 
tering angles is performed via detailed look-up tables calculated from Glau- 
ber theory, since the cross sections are in the form of rather complicated 
multiple integrals making direct sampling impractical. 

2.3 Diffractive Target Dissociation 

In the MC simulation, an inelastic interaction with a target nucleus typically 
removes the particle from further consideration (see sec. 2.6). Exception is 
made for single diffractive events where the target particle is excited to a 
low mass state, which implies (typically) that the projectile continues with 
only slight changes in energy and direction. The minimum energy loss of the 
projectile in such events is of order of the pion mass which, in the regime of 
interest here, is always a small fraction of the projectile’s energy. Below, the 
term single diffraction refers to this type of event only. Diffractive excitation 
of the projectile and subsequent decay usually incurs much larger energy 
losses by the projectile particle and is therefore not of interest here. 

The description of p-p diffractive processes is adapted from the review 
of Goulianos [12]: 

M2-M; b t 
dc/dtdM’ = 0.6bD(l: 36/a) 1 + MZ e D M2 < 1+ M,’ 

P 

= O.SbD(l + 36/s) exp(bDi)/M’ M’>l+M; (10) 

where i$, Ma, s denote the square of the invariant mass resp., of the prot,on, 
of the diffractively produced state and of the entire collision; t is the square 
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of the 4.momentum transfer and bD depends on MZ via the following simple 
parametrization based on experiment (see also ref. [12]): 

bD = 2b., Ma<l+M, 

= [zb., - 8(M* - M,’ - l), 7],., M2 2 1 t M, (11) 

where b.l is the slope parameter for elastic scattering at low t. In both of 
the above expressions masses, etc., are expressed in GeV, b,l is in GeVmz 
and the cross section of eq. 10 is in mb . GeW4. Eq. 10, integrated up to a 
limit [12] of Mz = s/10 yields a total cross section for single diffraction (in 
mb): 

oad = 0.6(1 + 36/s) [1/2(1 $ M,) f ln(O.ls/l t M;)] . (12) 

The above parametrizations are based on experiments which observe target 
excitation in the lab frame using incident protons in the 100-400 GeV/c 
range. It also describes ISR [13] and CERN Collider [14] results reason- 
ably well provided experimental momentum resolutions are folded into the 
comparison. 

The expressions for p-nucleon single diffraction may be applied to a 
nuclear target in the usual approximation that the particle traverses the * 
nucleus in a straight line and, at a given impact parameter, b, encounters 
an average number of nucleons T(b) = J-“, p(kz + c) dr per unit area. The 
nuclear density parameters are those adopted for elastic scattering (sec. 2.2). 
If a single nucleon encounter is classified as either elastic, single diffractive 
or absorptive, then the only composite diffractive events of interest here are 
those with one or more diffractive nucleon encounters plus any number of 
elastics but no absorption. The total cross section for ‘compound single’ 
diffraction off a nucleus is therefore 

& = J om(l - e-T(b)o.d)e-T(*)~.s,2?rbdb 

where o& = rrtet - 6.1 - oad. For convenience diffractive p-neutron scat- 
tering is assumed identical to p-p scattering though there are substantial 
differences [15], at least for pz/p, mo2 below 0.9. Fig. 4 shows o,d from eq. 12 
for p-p, as well as LT$ from eq. 13 for protons on selected nuclear targets, 
as a function of momentum. 

The addition of a nuclear single diffractive component, calculated in this 
fashion, to the elastic do/dt is shown in figs. 2 and 3. This is not necessar- 
ily meant to improve the comparisons, though it may well succeed therein 
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in some instances. Since the experiment [lo] exercises a (necessarily in- 
complete) veto on inelastic events this may suppress some single diffractice 
events, especially at large t. The presence of this component in the compar- 
isons is mainly to indicate its relative importance and to demonstrate that 
its presence does not contradict experiment. 

The u;“d provide a measure of the fraction of ctot leading to events of 
this type. This process is fully included in the MC calculation with the 
nuclear inelastic cross sections lowered accordingly. When such an event 
is encountered in the MC simulation, an impact parameter, or equivalently 
an average number of nucleon encounters per unit area, is selected from 
rr-‘daldb, where doldb is essentially the integrand of eq. 13. To represent 
fluctuations about this average, a random number of encounters, n,, is se- 
lected from a truncated Poisson distribution, i.e., with n, = 0 and n, > A 
excluded. Simulation of the nuclear event is then replaced by successively 
simulating a chain of n, diffractive and elastic events. Since there must 
be at least one diffractive encounter, and since the order within the chain 
has little or no effect on the final outcome, it is convenient to start with 
a diffractive event and assign the type of any subsequent events randomly, 
with probabilities proportional to ge, and (~.d. 

2.4 Energy Loss by Collision 

Energy loss by collision with atomic electrons is divided into small energy 
losses (the so-called restricted dE/dz) assumed to take place continuously 
along the track of the particle, and large energy transfers which are treated 
as point processes. The restricted dE/d+, which approaches a limiting value 
as opposed to increasing logarithmically with energy, is calculated using the 
familiar Bethe-Bloch formula with Sternheimer corrections [16], but with 
the kinematic limit of energy transfer per collision replaced by a somewhat 
arbitrary cut-off energy, set here at AE = 10 MeV. Much lower AE lead to 
excessive sampling of ‘large’ energy transfer events. Much higher AE will 
seriously underestimate fluctuations in dE/dz of the particle. 

For large energy transfer to atomic electrons the cross section is basically 
that of Rutherford scattering but transformed from dujdn to do/dT. where 
T. is the kinetic energy acquired by the electron (assumed to be unbound). It 
is readily adapted for MC sampling. The angular deflection of the projectile, 
0, is related to T., which is proportional to the 4-momentum transfer of the 
collision 

- t = 2m T zp2@ e e (14) 
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where p is the projectile momentum. For T. =lO MeV, 0 is of the order of 
0, from sec. 2.1, above which Coulomb scattering is treated on an individual 
event basis, so that both treatments are consistent in this respect. 

2.5 Bremsstrahlung and Direct Pair Production 

The energy loss and angular deflection associated with bremsstrahlung and 
pair production are simulated in the manner outlined in ref. [17]. Both are 
important in the TeV regime, although for the present application they may 
well be neglible in many cases. The basic algorithm consists of selecting the 
fractional energy loss of the fast particle, II, from a parametrization devised 
expressly for convenience in MC sampling which approximates numerical re- 
sults obtained from detailed ab ink& calculations of u-‘do/dv. (Ifv exceeds 
some preset uo (- l%), the event is considered equivalent to absorption for 
the present purpose.) Next, the rrns angle of the fast particle, (0’)‘/‘, which 
depends on u), is obtained from a simple formula, likewise based on more de- 
tailed calculations. A random angle is then selected from a Gaussian with 
o = (b’z)ljz to complete the event simulation. 

The criticism leveled at the Gaussian approximation of the mCs [3] ap- 
plies here as well. Specific inclusion of the ‘tails’, e.g., by a split as in 
sec. 2.1, would be a definite improvement. However, for applications of the 
type addressed here (see sec. 1) the particles belonging to these tails are 
likely to be of lesser interest. 

2.6 Nuclear Absorption 

An inelastic interaction (i.e. accompanied by particle production), with the 
exception of single diffraction (see sec. 2.3) essentially means removal of the 
particle from the elastics in the MC. When necessary, initial coordinates, 
etc., are recorded as input for other calculations. For problems connected 
with deep penetration one might alternatively treat nuclear absorption as 
continuously taking place along the track, in lieu of as a point process. 
This is accomplished by attaching to the particles a weight of exp(-z/&b.), 
where L is measured essentially along the incident particle dire&on. 

3 Edge Scattering 

This section describes an algorithmic approach to mCs in the presence of 
an edge. An ‘edge problem’ exists only for mCs and is tied to the approx- 

10 



imation that the angle varies continuously along the track of the particle. 
For point processes (or continuous processes which do not affect the par- 
ticle’s direction) the MC treatment is essentially analog and the geometry, 
including any edges, can be mod&d to arbitrary accuracy. In this context 
it should be remarked that geometrical imperfections may well bear on the 
problem and that these may be difficult to analyze and to represent, e.g., 
the ‘flat’ edge of a beam scraper is neither a plane nor does it likely even re- 
semble a regular surface when examined in sufficient detail. The dichotomy 
into single and multiple scattering is also related to this. These difficulties 
are not further addressed here but they should nonetheless be kept in mind 
when interpreting results. 

The basic flow of the MC calculation transports the particle from its 
point of incidence, through a number (2 0) of elastic interactions, each 
of which changes the direction and energy of the particle (see sec. 2), to 
eventual absorption or escape. Following each interaction (as well as at 
the point of incidence) escape from an infinitely long target, i.e., the first 
passage, is simulated. The distance to escape is then compared with the 
randomly selected distance to the next discrete event (as in a homogeneous 
target) or, in a target of finite length, with back escape. The problem is 
therefore to devise MC schemes to simulate the first passage as well as to 
find the location of the successive points of interaction (or escape), and the 
particle’s direction at each point, taking into account mCs and the presence 
of an edge. 

The method proposed is reminiscent of Kelvin’s method of images which 
has already served a similar purpose in ‘ballot theorems’ [18] and first pas- 
sage times in Brownian motion [19]. The problem of mCs in a b&k of finite 
or infinite length is the only application considered here. But the approach 
is quite general and is not limited to mCs, flat surfaces or the small angle 
approximation. 

The remainder of this section discusses first the Fermi distribution which 
describes mCs in a homogeneous target and sets the stage for the introduc- 
tion of the edge scattering algorithms, which vary somewhat in character 
depending on the geometry: edge-to-edge, front-to-edge and front (or edge)- 
to-back. 
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3.1 Homogeneous Target 

For mCs in a homogeneous target the Fermi distribution [20] applies. In full 
generality: 

F(z, Z’lZ& z;, 2) = (2%@n9,azZ) 

.e -(4/e:.)[(2’-~~)1--3(~‘--2~)(2/*--20/*--5;))+3(5/.--50/.--2~)z] (15) 

where 1 in F( ) ) separates the given parameters 10, a$, L from the variables 
I, I’ (initially 10, zb) which denote respectively the lateral displacement and 
its derivative with respect to z, the distance in the a$ = 0 direction; 0. is the 
rms (spatial) angle per unit length (see sec. 2.1). There is an entirely similar 
distribution for y, y’. The origin of this formula is attributed to Fermi [ZO]. 
It was rederived by Eyges [Zl] and by Scott [22] by formulating and solving 
a second order partial differential equation. An alternative derivation of 
eq. 15 follows from probability arguments and is sketched heuristically in 
app. A. 

Eq. 15, integrated over all z’, yields a Gaussian 

with z = I,, + zbz and o = f?.~~/~/&. The distribution of I’, for a given I, 
is likewise Gaussian: 

q+, .+ & *) = (2/J;;B.z’/Z),-4[r’-3(2-ro)/2r+sb/21)/8:r (17) 

with 2 = 3(z - zo)/Zr - zb/Z and v = B,z’/~/~& This ensures fast and 
readily available MC schemes for sampling from eq. 15. 

3.2 Edge-to-Edge Scattering 

Eq. 15 applies to an infinitely wide block. An obvious problem arises in the 
presence of an edge: F(z, +‘~z,J, a$, z) is radically altered not only in the void 
but also within the material since a trajectory once it crosses the edge cannot 
return. Therefore, predictions from eq. 15, which includes contributions 
of returning trajectories, overestimate the flux within the target. This is 
schematically displayed in fig. 5 which also shows the conventions adhered 
to here: the material-void boundary lies along the z-axis with the material 
filling the + > 0 part, while the particle starts at z = 0 and travels in the 
positive r-direction. 
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A convenient starting point is the problem of a beam entering and exiting 
the side of an infinitely long (-cc <t<cm) , semi-infinitely wide (O<z <ma, 
-cc < a, < co) block, as shown in fig. 6. One seeks the first passage dis- 
tribution in z of the particles through the plane of the edge as well as the 
distribution in z’ of the particles leaving the block at a given z. (Below, the 
joint distribution of z and z’ is also referred to as a tist passage distribu- 
tion). The block is assumed to be infinitely wide in both y-directions hence 
the y,y’ distribution, at any I up to the point of escape, is unaffected by 
the edge and follows eq. 15 [23]. 

The solution to the first passage problem offered here is in the form of 
an infinite series of convolution integrals. The series has good (exponential) 
convergence properties and, along with each of its individual terms, is easy 
to sample from in a MC calculation. No extra assumptions are invoked in 
its derivation, hence its level of approximation is the same as the underlying 
Fermi distribution: small angles, large number of scatterings, etc. 

Consider (the projection onto the +, z plane of) the trajectory of a parti- 
cle undergoing mCs in an infinite, homogeneous target and suppress, for the 
moment, all other processes. Whenever the trajectory crosses a given plane 
(an imaginary edge at constant z) an index is attached to the trajectory 
which enumerates the crossings (see fig. 7). The total crossings (summed 
over all indices) for a particle starting at I = 0 and at an angle zb with the 
z-axis, as a function of z and z’, is a slightly altered Fermi distribution 

c(d, zIzo = 0, I;, z = 0) = (2~1111/*efr*)e-(4/8:r)(=“+r’=b+za) 

(18) 

which is considerably simplified from eq. 15 by placing the edge along the 
r-axis but is otherwise unchanged except for the factor Jz’l representing 
the Jacobian of the change of variables from + to z. The second equality of 
eq. 18 expresses C(z’, ~10, I;, 0) as the summation over all crossings, with 
Cj being the I’, z distribution for the jth crossing. The desired first passage 
distribution is then Cl(r’, z). 

Eq. 16 may be decomposed into its odd and even components 

c, = cl + c, + . = (2J;jll’l/*e~zZ)e-(‘/~:~)(=‘1-l~’IZb+~~z) (19) 

cc = c2 + c, + . . . = (2Jj-ll’I/*etZ2)e-(‘/~:~)(~‘z+l~’l~:+~~~) (20) 

where the arguments of the C; are suppressed for brevity. Co is geometrically 
related to C. and C1 by a convolution over zi combined with an integration 
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c. = co *c, = 
Jl 

z mCo(z~,r;)O ,zr,, O)Cl(r’,z - z;~O,+~,O)d~z~~dzi (21) 
0 0 

where z:, z; are the variables at the intermediate crossing and *is shorthand 
for the combined convolution and integration. It follows likewise that 

c,-c~=c.*c~, 

which along with eq. 21 yields 

P-4 

c,=(c.-c.)+(c.-c.)*c~ 

and upon iteration becomes the series 

(23) 

Cl = (Co - Cc) t (Co - Cc) * (Co - C.) t (C. - c.)*” + f. f (24) 

with the exponential notation signifying repeated * operations. 
The first term of eq. 24, i.e., eq. 19 minus eq. 20, integrated over z’ 

J 
yco - C.)dlz’l = (~~b/2J;RB.r3/*)e-3~alB:~ (25) 

cl 

becomes a stable distribution ofindez 1/Z in z. Further integration of eq. 25 
over all z gives the total contribution of the (Co - C.) term to C, and is 
equal to one half, which could be inferred intuitively as the fraction of all 
particles with I < 0 at infinity. It follows that the double integral over the 
second term of eq. 24 

m 
JJ 

-(Co - C.)*(C, - C.)dtdld = l/4 (26) 
0 0 

and that the RHS of eq. 24 integrated term by term yields the familiar series 

;+:+;+...=1 (27) 

where the summation to unity confirms the intuitive notion that a particle 
entering a semi-infinite block must eventually (in the absence of absorption, 
etc.) emerge [24]. 

The series of eq. 24 is readily implemented into a fast and simple MC 
procedure to generate a fist passage distribution in L, z’ for a semi-infinite 
block. First, a particular term is selected from eq. 24 by comparing a uni- 
form random number (0 < ‘P < 1) with the partial suns of eq. 27, i.e., 
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l/2,3/4,7/8,. . . If the first term is selected (r < l/2) a .z value is chosen 
from the normalized eq. 25, which is equivalent to a Gaussian distribution 
in z-l/‘. The conditional distribution of z’ for given I can be written as 

C(z’lo, &, 0,~) = (0.&/&&5”f/“~’ 
.(412’l/etr)e-alRIs:z [,-W=-4)Z/C~ - ,-W4+4’/@~~] (28) 

i.e., as a product of an exponential in z”, which is easy to sample, and the 
difference of two Gaussians, which can be accounted for by rejection. (This 
procedure is modified in unessential ways when zb becomes either very small 
or very large so as to avoid unacceptably high rejection rates.) 

If, instead of the fist, the 7~ th term of eq. 24 is initially selected 
(1- l/2+’ < r < 1- l/2”) a chain of n (zi, 2:) is produced, i.e., from 
~0, zb a ~1, z; is generated in the above manner, in turn a ~1, z; is generated 
from ~1, z;, etc., until z,,, z; is obtained. A sample produced according to 
this algorithm is an unbiased first passage distribution in L, z’ for particles 
with initial state ~0, zb. 

3.3 Front-to-Edge Scattering 

The first passage distribution for a particle enetering the front and exiting 
the side (see fig. 5b) of a semi-infinitely long (0 < z < OD), semi-infinitely 
wide (0 < I < 00, --oo < y < XI) block is obtained in similar fashion to the 
edge-to-edge case. Analogous to eqs. 19 and 20: 

a(~‘, 21~~~ z;, I = 0) = (2d+'I/Te;z2) 
.e-(4/8:I)[s'~t,at35b59/1+32~/12+/*'/(.~+3~0/1)] 

(30) 

where different symbols D,, D.(# Co, C,) are used to indicate the different 
initial condition (z. # 0). A derivation analogous to the one lading to 
eq. 24 results in 

DI = (Do-D.)t(D.-D.)*(C,-C.)+(D,-D,)*(C,-C&)**+... (31) 

DI = (Do - De) t (Do - De) * C,. (32) 
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The fust term of eq. 31, when integrated over all I’, 

J 
om(Do _ De) +‘I = ~~~~~=~2Zb)e-(3/8:2)(rO/z+r~)z (33) 

corresponds to a Gaussian in the variable a q (Q/Z t z&)/,/Y, which, when 
integrated further over all z, again is equal to one half. It then follows that 
eq. 31 integrated over all I’ and z likewise leads to the series of eq. 27. 

In spite of the similarity, important differences remain with the edge- 
to-edge case. The z-distribution of eq. 33 is obviously more complicated 
than its counterpart of eq. 25. More troublesome is the observation that 
Jom(D, - D.) dlz’l for the front-to-edge case becomes negative when zb < 0 
and when z > -320/zb (E zo), whereas for edge entrance zb, and hence 
J,“(C. - C.)dlr’l, is always positive. But since D1 represents a probability 
distribution it must be positive everywhere and therefore the integral of the 
remaining term of eq. 32, Jom(D, - D,) +C’I dlz’l, must compensate for this. 

For zb > 0, both terms of eq. 32 are positive everywhere and MC selec- 
tion of the z of a f&t passage proceeds much like for edge entrance. Each 
term of eq. 32, integrated over all I’ and .z, contributes one half to the total 
(unit) probability. A value of a is chosen randomly from a half-Gaussian 
(eq. 33, for 0 <a < co) and the corresponding z follows by solving the cubic 
equation z(a) = 0, which for zb > 0 always has one real root (= z) and two 
complex roots. With a probability of one half this I is also the z of the tist 
passage. The conditional probability, D(+‘jz = 0, zb, ~0, z), for z’ at a given 
z of the normalized (Do - D.) ) is 

D(z’)z = 0, IO, I;, z) = (+‘I/fi,/&.A) 

[e-+-A/~)‘/~:. _ e-4(lz’ltA/2)2/8:r] (34) 

where A = zh + 320/r. For zb > 0, A is always positive and hence eq. 34 is 
always positive. ( Eq. 34 is actually cast in a different form for efficient MC 
selection but this complication is omitted here.) The other term of eq. 32, 

(Do - De) * G, carries equal probability and is sampled by generating an 
edge-to-edge fist passage from an intermediate z, z’ obtained from (Do-D.) 
in the above fashion. 

For zb < 0 the correspondence between z and a is shown in fig. 6. For 
/aI < 21~~/~~*/3&~ there are three real roots of which one lies in the 
z > ~0 region, where D, -De < 0. For a > 2~~~~~/~/3&~ there is one real 
root and two complex roots. Eq. 33 still holds but has no longer the same 
straightforward probabilistic interpretation. Do - De is negative for z > ~0, 
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independent of I’. Likewise, the integrand of (Do - D.) * C1 is negative for 
values of the integration variable r; > zo. The positive part of D, - D, has 
a total probability 

p1 = k [1 t =7f(2iW2/3fie.)] (35) 

between l/2 and unity. The MC proceeds by selecting, with probability pl, 
a fist passage from the positive part of Do - De by choosing an a from 
the truncated Gaussian of fig. 8 and solving z(u). The &-selection follows 
the zb > 0 case. The remaining part of the probability, 1 - pl, is simulated 
by generating an edge-to-edge fist passage .z, z’ from an intermediate zi, z: 
(zi < 20) obtained from (the positive part of) Do - De. If z is less than 
zo, then .z,z’ can still be immediately identified as a (front-to-edge) first 
passage. For .z > .zo a correction must be applied to account for the negative 
parts of both terms: eq. 32, rewritten with the convolution integral split 
into two parts, 

DI = (D.-D.)t~z~m(D.-D.).C,d~~dlz:~t~~~-(D~-D,).C~dz;d~.~l 

(36) 
has a positive middle term while the first and third term are negative. Equiv- 
alently, 

D,= =’ - 
JJ 

(Do - D.) Cl dz; dlz:l 
0 0 

l- 
1 

(De - Do) + Jz;.&-(Do - De) . G 6 dlz:I 

So’OSom(D,-D.)‘C1dzidlZ:l I 
(37) 

whence the MC algorithm: sample z, I’ from (D, - De) * Cl (0 < r, < zo) 
and take the factor in the braces into account using rejection. 

An accurate evaluation of the integrals inside the braces at every oc- 
currence in the MC would result in unacceptably slow execution. Instead 
they are evaluated by the MC method at, only a few points. Making use 
of the expanded form of Cl guarantees faster convergence for comparable 
computational effort. From eq. 24 it follows that 

(Do-D.)*G = [(Do - De) t (Do - De) * (Co - Ce) t .]*(Co-Cc). (38) 

The expression (Co - Ce) at the end of eq. 38 is always directly evaluated 
while each of the terms of the series in the square brackets is generated by 
MC simulation. 
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To qualify as a rejection factor, the expression in braces must have a value 
between zero and unity. This is guaranteed from probability considerations 
but may not always hold for approximate values. However the MC algorithm 
requires the rejection factor to lie within this range and evaluation of the 
integrals continues until the criterion is met. 

9.4 Back Escape 

For a block of finite length, back escape, with entrance either via the edge 
or front of the block, is pictured schematically in fig. 9a. The problem is to 
find the coordinates and direction of the particle at the point of escape from 
the back of the block, in the presence of an edge. (Whether the particle 
will escape via the edge or back is decided in the MC by generating a fist 
passage L, z’ and testing z versus the length of the block.) The back escape 
problem generalizes to include the problem of finding the coordinates and 
incident particle direction for a point process (see fig. 9b). 

Only the case of front entrance-back escape is stated explicitly here but it 
readily specializes to side entrance-back escape. The MC algorithm adopted 
here is to choose z,z’ from the Fermi distribution (eq. 15) and apply a 
correction factor to account for out-scattering. Call Fo(z, z’) the distribution 
with the edge present, then 

Fo(z,r’) = F(z,z’~z,,,z;,z) 

- 
JJ 

2 -g(. 1 r,, c, 20, z;, O)G(r,r’lz~, z - 2;) dz;dlr:~ !I (39) 
0 0 

where a different symbol, G(+, z’lz:, z - z;), signifies the special condition 
of edge entrance: z. = 0. In the manner of eq. 37, this can be rewritten as 
the Fermi distribution times a rejection factor 

Fo(z, 2’) = F(z, +,, z;, z) 

The MC follows closely the algorithm discussed in connection with eq. 37. 
This appears, at least conceptually, the simplest, way to account for the 
presence of the edge [Xl. 
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4 Results 

The MC program ELSIM serves mainly to simulate realistic scenarios of 
beam loss and, with the help of other programs, its consequences. It ap- 
pears nontheless useful to present a few general results here, i.e., some 
results pertaining to a pencil beam incident on a block at various angles 
and displacements from the edge, without the complication of an extended 
incident phase space. 

Figs. lo-13 show iso-absorption contour plots for 1 TeV/c protons in 
the space of IO,& the incident particle’s displacement and angle, for var. 
ious materials. Each contour represents a certain fraction of particles ab- 
sorbed (Ap 2 1%) in a semi-infinitely long (0 < z < co), semi-infinitely wide 
(0 <I < 00, -m < y < m) block. The remainder can then be interpreted as 
the fraction scattered out via the edge. This follows closely the presentation 
of Sievers [27], and there is at least qualitative agreement with ref. [27]. 
Better agreement is likely lacking because Sievers considers neither the edge 
regime nor wide angle processes in great detail. As is evident from the basic 
form&e for (single or multiple) Coulomb scattering, angles and distances 
should scale with momenta as p-‘. This can be ascertained, e.g., by com- 
paring fig. 12 with fig. 14 which represent iso-absorption curves for iron at 
1 TeVfc and 20 TeV/c, respectively. The scaling is almost exact for small 
fractional absorption but deviations are clear for the iso-contours of 60% and 
above. This is presumably due to the non-Coulomb contributions’which do 
not scale with the same precision. Under the rule adopted here, whereby 
particles with momentum loss exceeding 1 % of the incident momentum are 
excluded from the elastic regime, scaling is directly affected by target length 
and incident momentum, e.g., 100 GeV/c protons penetrating m 70 cm of 
iron have lost on average N 1% of their momentum due to collision losses 
Only. 

For many applications the intercept of the iso-absorption curves with the 
ordinate is of special interest since this corresponds to absorption probabili- 
ties of particles entering via the edge. This is shown in more detail in fig. 15 
for 1 TeV/c protons. It can be seen that, for an infinitely long scraper, 
low-Z materials are favored over high-Z ones. For practical purposes these 
results hold for finite targets down to lengths of about one meter. For much 
shorter targets and for sufficiently large zb the heavier targets become more 
favorable. This is illustrated in fig. 16 which is similar to fig. 15 but pertains 
to a 20 cm long target. Both figs. 15 and 16 show, somewhat surprisingly, 
that absorption remains significant down to extremely small angles (where 
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some of the difficulties with the model, referred to above, are likely to come 
into play). 

Variation of absorption probability with target length is pictured in 
fig. 17 which presents iso-absorption contours for the case of a 1 TeV/c 
proton beam incident on the edge on an iron target as a function of a$ 
and z. Complementary to fig. 17, contours of equal back-escape from the 
same calculation are shown in fig. lg. By subtracting the combined results 
of figs. 17 and 16 from unity the probability of out-scattering via the edge 
is obtained. For the case of 1 TeV/c protons incident edgewise on an in- 
finitely long iron target, a number of global averages pertaining to particles 
exiting the block are plotted in fig. 19 as function of the incident angle zb. 
Absorption and wide angle processes greatly reduce these averages in value 
and make their calculation tractable by the MC method. The first passage 
distribution for I&S alone (eq. 24) is marked by extremely long tails which 
make averaging difficult. Fig. 20 shows absorption probabilities of various 
materials for a 1 TeV/c proton pencil beam parallel to the edge (zb = 0) 
when the displacement from the edge is varied. Again it is observed that 
absorption remains significant even down to extremely small displacements 
from the edge. Again it is cautioned that at these extremes care must be 
taken in the interpretation of the results. 

5 Concluding Remarks 

In all cases examined here, when either or both 10 and zb are sufficiently 
large there is good agreement between calculations based on the above al- 
gorithms and stepwise simulation. When co and zb are both small, results 
diverge in an expected manner. (In some applications it may of course be 
advantageous to combine these two techniques.) 

The MC algorithms derived here are all unweighted procedures. Weight- 
ing schemes become convenient and even necessary when attention is fo- 
cussed on rare events. A generally applicable weighting technique has been 
mentioned in connection with deep penetration (sec. 2.6). In some instances 
it may be advantageous to replace rejection factors as occur, e.g., in eqs. 37 
and 40, with weights. For many problems, however, efficient weighting 
schemes will tend to be more complex and are best constructed on an ad 
hoc basis. 

As shown in sec. 3 the algorithms are easy to apply in a MC calcula- 
tion. Even if closed form solutions were known to these problems, there 
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may be no computational gain since, on account of the complexity of the 
point processes, MC simulation offers the only practical means to study the 
complete problem and the closed form solutions would not necessarily lead 
to simpler algorithms. Other than for their statistical nature, characteristic 
of MC simulations, the algorithms represent the fust passage distribution 
of mCs essentially to the same degree of approximation as the Fermi distri- 
bution does in a homogeneous target. Problems at large scattering angles, 
connected with the latter, are largely circumvented by the introduction of a 
sensibly small cut-off angle (see sec. 2.1). 

Finally, expressions such as eqs. 24, 32, etc., are more general than their 
present application to r&s. They can serve to generate fist passage distri- 
butions for any diffusion problem [ZS] for which the joint 2, z’ distribution 
is known along the boundary of interest, whatever its shape. Generalization 
to multiple boundaries and multiple material target,6 appears possible and 
rather straightforward for plane edges. As a practical matter the usefulness 
of the algorithms for other distributions and geometries will be determined 
by mathematical convenience. 

A Fermi Distribution 

An alternative to the Eyges-Scott type derivation, based more directly on 
probability arguments, starts by observing that I’ executes a simple one- 
dimensional random walk consisting of a series of independent steps AI: = 
(2: - +iel). For convenience set 10 = 0 and zb = 0. From the Central Limit 
Theorem, after a sufficiently large distance, 2, the variable z’(= C AZ:, for 
z& = 0) has a Gaussian distribution with 2 = 0, o,r = B.Z’/2/& where 
0. is the rms (spatial) angle of scattering per unit length (see sec. 2.1) and 
where Z1/z appears because to obtain the rms I’ the AZ: add in quadrature 

PC=‘) = && -.‘z/s:z 

The displacement, L, is likewise a linear combination of the AZ: 

I = Zz; + (2 - rI)Az; + + (2 - zn)Az:, = &Z - r;)Ar; (42) 
;=I 

where the second equality follows from the choice zb = 0. The index i 
enumerates the scattering6 or may also refer to some fixed large number of 
equidistant (AZ) points between 0 and Z. Using the latter interpretation it 
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- 
follows that the AZ: are normally distributed with Ahc: = 0 and oi,! = 

l?zAz/2 and that likewise I is normally distributed with Z = 0 and 

u; = x(2 - z;)%~~~ = c(Z - z$B:Az/2 (43) 

since the AZ: are independent. In the limit of AZ + 0 

0; = $ JoZ(Z - *)Q* = ; ; 

as can be verified in sec. 3.1. 
Since both z’ and I are linear combinations of independently normally 

distributed variables (the AZ:), their joint distribution is guaranteed to be 
(bivariate) normal with v.,v~, as for the marginal distributions (eqs. 41 
and 44) [ZS]. There remains only to determine the coefficient of correlation, 
p, between z’ and I, which, for I r = O,Z = 0, can be written as p = 
&/u.ar,. From eq. 42, 

p = (C(Z - +z:). (CAz:) = C(Z - G)(Az:)~ 

~d~z7 o&4, 

which becomes in the limit AZ --t 0 

(45) 

P= 
JozWW - ZP = &,2 

s;z=/2fi 

The Fermi distribution is obtained by substituting c~, cr.+ and p in the gen- 
eral form of the bivariate normal distribution of I and z’ 

F(+, +‘I(,, 0, Z) = (~~/rr~~~a)e-~4ie:z~~~‘z-3z’~/z+3~~/zz~ (47) 

which corresponds to eq. 15 with 10 = zb = 0. Generalization to eq. 15 
follows from geometrical arguments. 
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Figure Captions 

Fig. 1 Fit of K (or t&i,, ) to data of ref. 7. Error bars reflect experi- 
mental uncertainty. 

Fig. 2 Fits of Glauber theory to du/dt data of ref. 10 for elastic and 
quasi-elastic scattering (solid lines) of 70 GeV/c protons on var. 
ious nuclear targets. Dashed lines include diffractive low mass 
target excitation. 

Fig. 3 Fits of Glauber theory to du/dt data of ref. 10 for elastic and 
quasi-elastic scattering (solid lines) of 175 GeV/c protons on 
various nuclear targets. Dashed lines include diffractive low mass 
target excitation. 

Fig. 4 Total cross section for p-p single diffraction dissociation and for 
compound single diffraction dissociation of protons on nuclear 
targets. 

Fig. 5 Trajectory crossing (a) virtual boundary in homogeneous me&- 
urn, (b) edge of block into void. For (b) particle flux at point P is 
reduced. Trajectories (here and below) are drawn schematically 
Only. 

Fig. 6 Particle entering semi-homogeneous target via flat edge. The 
distribution of particles emerging from the block as a function 
of z and z’ is to be determined. 

Fig. 7 Schematic trajectory of particle repeatedly crossing a plane in a 
homogeneous target. The index j is attached to the jth crossing. 

Fig. 8 Gaussian distribution of the variable ~2 and relation of a to z. 
Trigonometric solutions of z(a) with k = 1 or 2 correspond to 
D.-D, > 0 and are equi-probable; k = 0 solution, corresponding 
to D, - D. < 0, appears in rejection factor (eq. 37). 

Fig. 9 (a) Back escape for front or edge entrance. (b) Equivalence of 
determining I, I’ at point of interaction to determining I, 2’ at 
escape. 

Fig. 10 Iso-absorption contours for infinitely long, semi-infinitely wide 
(0 < 2: < 03, -cc < y < m) beryllium target for a 1 C&V/c pencil 
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beam of protons as a function of displacement 10 and angle zb 
of the beam (yo = yh = 0). 

Fig. 11 Iso-absorption contours for infinitely long, semi-infinitely wide 
aluminum target for a 1 TeV/c pencil beam of protons as a 
function of displacement 10 and angle a$ of the beam. 

Fig. 12 Iso-absorption contours for infinitely long, semi-infinitely wide 
iron target for a 1 TeV/c pencil beam of protons as a function 
of displacement 10 and angle zb of the beam. 

Fig. 13 Iso-absorption contours for infinitely long, semi-infinitely wide 
tungsten target for a 1 TeV/c pencil beam of protons as a func- 
tion of displacement 10 and angle zb of the beam. 

Fig. 14 Ix-absorption contours for infinitely long, semi-ititely wide 
iron target for a 20 TeV/c pencil beam of protons as a function 
of displacement 10 and angle zb of the beam. 

Fig. 15 Fraction of protons absorbed in infinitely long, semi-infinitely 
wide targets of various materials, as a function of angle (zb) of 
the I TeV/c proton beam incident on edge of target. 

Fig. 16 Fraction of protons absorbed in a 20 cm long, semi-infinitely 
wide targets of various materials, as a function of angle (2;) of 
the I TeVproton beam incident on edge of target. 

Fig. 17 Iso-absorption contours for semi-infinitely wide iron target for 
a 1 TeV/c pencil beam of protons incident on edge of target as 
a function of angle (2;) and target length (2). 

Fig. 18 Fraction of protons absorbed in infinitely long, semi-infinitely 
wide targets of various maWi&, as a function of displacement 
(IO) of the 1 TeV/c proton beam parallel to edge of target. 

Fig. 19 Contours of equal back-escape probability for semi-infinitely 
wide iron target for 1 Te V/c pencil beam of protons incident on 
edge as a function of angle and target length (2). 

Fig. 20 Average I’, ~~0 average z,oz and rP for infinitely long, semi- 
infinitely wide iron target for a 1 TeV/c pencil beam of protons 
incident on edge as a function of angle (zb). 
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